Альтернативные источники энергии для электроснабжения дачи или дома

Содержание:

Солнечные батареи

Альтернативное электричество от солнца в частном домостроении используется редко. Все дело в дороговизне солнечных элементов, которые устанавливаются в батареях. Отсюда и высокая стоимость всей установки. Хотя необходимо отметить, что это перспективное направление, от которого нельзя отказываться. Ведь ежегодно на один квадратный метр поверхности земли падает 1000 кВт энергии. Представляете, сколько человечество теряет. Если сравнить с другими видами топлива, то это 100 м³ газа или 100 литров солярки.

Конечно, таким способом получить электрический ток еще дорого. А вот нагреть так воду – это очень дешево. Вот почему солнечные коллекторы сегодня так востребованы у жителей загородных поселков.

Есть ли будущее у альтернативных источников энергии в России

Несмотря на положительные тенденции, об активном развитии ВИЭ в России речи пока не идет.

Полноценному развитию ВИЭ в России препятствует отсутствие амбициозных национальных целей в области развития ВИЭ, а также распространенность неверных убеждений, считает Ланьшина из РАНХиГС. «Например, многие жители страны, включая лиц, принимающих решения, сомневаются, что за счет энергии солнца и ветра можно стабильно снабжать предприятия электроэнергией, считают, что для солнечной электростанции необходима огромная территория, а также не знают о том, что в России производство солнечной электроэнергии сегодня может стоить менее ₽4 за 1 кВт·ч», — добавляет она.

Зеленая экономика

Как менялось отношение к проблемам экологии в России за последние 20 лет

Еще одна из причин отсутствия развития в этой сфере — недостаточное количество специалистов в области ВИЭ.

Илья Лихов, гендиректор Neosun Energy:

«К сожалению, в России слабая инженерная база. У нас мало инженеров, ориентирующихся в современном оборудовании и технологиях, которые могли бы заниматься практическим обучением новых специалистов. Сейчас институт инжиниринга в России — это наследие СССР, которое с 1980-х годов эволюционирует очень медленно, а зачастую и вовсе закрыто к современным идеям».

В комплексе изменить систему поможет развитие образовательных проектов. Так, группа «Роснано» с издательством «Точка.Digital» и Ассоциацией развития возобновляемой энергетики выпустили учебное пособие «Развитие возобновляемой энергетики в России: технологии и экономика».

С конца 2019 года в России работает образовательный проект «Солнечные школы» — на крышах школ устанавливаются фотоэлектрические модули для производства электроэнергии. При этом солнечная энергия накапливается с помощью современных аккумуляторных систем, а электроэнергию, полученную с ее помощью, можно использовать в школе — например, для освещения или зарядки смартфонов.

Ирина Головашина, представитель Гёте-Института в Москве:

«На уроках дети могут сами познакомиться с принципами работы фотоэлектрических систем. Сейчас солнечные панели установлены на крышах школ в Москве, Санкт-Петербурге, Самаре, Краснодаре, Калининграде, Уфе и Ульяновске. При этом каждая школа-участница проекта получила в подарок «Чемоданчики для экспериментов», с помощью которых ученики могут выполнять различные лабораторные работы и углублять практические навыки».

Развиваться в этой сфере заинтересованные школьники смогут в проекте «Солнечные Университеты», который реализует МЭИ вместе с компаниями eclareon и НП «Евросолар». В нем участвуют вузы из Москвы, Калининградской области, Краснодарского края, Башкортостана, Ульяновской и Самарской областей и многие другие.

Зеленая экономика

Экологическое просвещение в школах: как устроено и кто за него отвечает

Татьяна Андреева, проект-менеджер eclareon GmbH, координатор проекта «ENABLING PV in Russia»:

«Цель проекта — создать сеть между университетами и «солнечными школами» и предложить выпускникам семи школ подходящую платформу и пул знаний для обучения в области энергетических технологий и энергетической промышленности в сфере ВИЭ. Участвующие российские университеты будут объединяться с немецкими университетами, научно-исследовательскими институтами, уже создавшими учебные и образовательные программы, а также исследовательские проекты в области фотовольтаики и ВИЭ».

Число образовательных проектов будет неизбежно увеличиваться, ведь ВИЭ продолжают создавать многочисленные рабочие места по всему миру. Согласно данным Международного агентства по возобновляемым источникам энергии (IRENA), количество рабочих мест в секторе достигло в 2020 году 11,5 млн по всему миру. Большинство работ — в сфере солнечной энергетики, здесь заняты 3,8 млн сотрудников.

Гидроэнергетика

К возобновляемым источникам энергии относятся широко распространенные гидроэлектростанции. На этих объектах используется потенциальная энергия водных потоков.

Традиционные гидроэлектростанции

Возводят гидроэлектростанции, как правило, на реках. Для создания необходимого давления воды создают мощные плотины и объемные хранилища воды. Как разновидность, используют бесплотинные ГЭС.

Данным объектам (ГЭС) гидроэнергетики присущи следующие особенности.

Положительные:

  1. высокий КПД при сравнительно малых экономических затратах на строительство и дальнейшую эксплуатацию станции, отсюда низкая себестоимость электроэнергии;
  2. отсутствуют вредные выбросы в атмосферу;
  3. водохранилище как фактор, улучшающий микроклимат в районе ГЭС;
  4. возможность разведения рыб;
  5. предотвращает появление паводков, используется для орошения сельхозугодий, технического применения на заводах;
  6. обладают механизмом регулирования потребления энергии.

Отрицательные:

  1. водохранилища затопляют обширные территории, занимают земли, пригодные для сельского хозяйства;
  2. перекрытие рек существенно меняет условия для обитания ценных видов проходных рыб, многие из которых исчезают из облюбованных ранее водоемов.

Гидроэлектростанции, как возобновляемые источники энергии, эффективны для поставки электроэнергии в горные участки. Они имеются в Швейцарии, на территории России. В мировом объеме поставляемой энергии доля гидроресурсов составляет около трех процентов. В Канаде, Исландии и Китае основную часть электроэнергии вырабатывают именно гидростанции.

Красноярская гидроэлектростанция

В России строительство гидроэлектростанций всегда считалось выгодным направлением. В наши дни гидростанции вырабатывают 6 процентов электроэнергии страны. Площади крупнейших водохранилищ ГЭС составляют тысячи квадратных километров. В пример можно привести размеры Самарского водохранилища, площадь которого превышает 6400 км2.

Приливные электростанции

Особой разновидностью гидроэнергетики являются приливные электростанции, работающие на основе использования энергии приливов и отливов. Они возводятся на побережьях, где под воздействием гравитационных сил Солнца и Луны ежедневно меняется уровень воды морских и речных водоемов. Залив или устье реки перегораживают дамбой. Встроенный в неё гидроагрегат с огромными лопастями и преобразует силу прибоя в электроэнергию.

Так устроена приливная гидроэлектростанция

Такая форма получения энергии из неисчерпаемого источника очень экологична, имеет малую себестоимость. Однако само строительство требует больших вложений. Кроме того, перепады в мощности не позволяют поставлять электроэнергию в постоянном режиме. Тем не менее, станции ПЭС ценят за высокую эффективность и малое влияние на экологию. Их строительство продолжается во многих странах.

Волновые электростанции

Энергия волн представляет собой огромный потенциал. Удельную мощность морских и океанских волновых колебаний оценивают гораздо выше солнечной и ветровой. Специалисты подсчитали, что мощность волн мирового океана равна примерно 30 процентам всей потребляемой электроэнергии на Земле.

Волновая гидроэлектростанция Oyster в Шотландской прибрежной зоне мощностью 600 кВт

Работа волновых электростанций построена на превращении потенциальной энергии волн в электрическую. Выбор места строительства подобных объектов получения электричества обусловлен особенностями региона, наличием крупных водоемов и сильных ветров.

Гидроэнергетика будущего

Гидроэнергетика не стоит на месте. Постоянно придумываются новые специфические виды использования силы мирового океана. К примеру, в данный момент разрабатываются технологии использования в энергетике морских течений и разницы температур на различных глубинах.

Океанские и морские течения (Куросио, Гольфстрима и т.п.) также обладают определенной энергетической силой, потенциал которой на практике пока не оценен. Но ученые и проектировщики считают возведение гидростанций, использующих энергию водных течений, перспективном направлением в морской энергетике. Согласно технологии, применяют специальные преобразователи в виде объемных и водяных насосов.

Роторная система Seagen, расположенная у побережья Ирландии, преобразует энергию течений в электроэнергию

Электроэнергию можно получать, используя разницу температур поверхности и глубинных слоев моря или океана. Разность на глубине 400 м и верхнего слоя воды составляет 12 градусов. В данный момент уже существуют экспериментальные системы преобразования разницы температур в электричество, основанные на пьезоэффекте.

Ветроэнергетика

Глобальный рост установленной мощности ветрогенераторов.

Существуют ветрогенераторы с вертикальной и горизонтальной осью вращения ротора. Конструкция первых проще, но вторые имеют больший КПД, достигающий 30-40 %. Поэтому для промышленной ветроэнергетики используются генераторы с горизонтально осью ротора в основном с мощностями от 1 до 2.5 МВт и диаметром ротора от 50 до 80 м. Существуют и ветрогенераторы мощностью 8 МВт.

Затраты на ветроэнергетику сводятся почти исключительно к строительству, а стоимость энергии постепенно приближается к стоимости «традиционной» энергии. В силу шума и вибрации ветрогенераторы ставят на удалении от жилых домов 300 и более метров, но непосредственно под ветрогенераторами можно продолжать сельскохозяйственное производство. Пока существует множество перспективных площадок для размещения мощностей на берегу и в море. В частности, Германия, Дания и Нидерланды собираются создать на банке Северного моря остров для большой ветроэлектростанции. В 2014—2015 годах в Дании с помощью ветрогенераторов производилось 42 % всего электричества, в Португалии 27 %; в Никарагуа 21 %, в Испании 20 %, в Ирландии 19 %, в Германии 8 %, а в Европейском союзе 7,5 %. К началу 2016 года общая установленная мощность всех ветрогенераторов составила 432 гигаватта и превзошла суммарную установленную мощность атомной энергетики. Однако, существует так называемый capacity factor (Коэффициент использования установленной мощности — КИУМ), который определяет эффективность работы электрогенератора. По данным US Energy Information Administration (EIA), на 2015 год этот коэффициент для атомных электростанций составлял 92.3% от установленной мощности, для ветрогенераторов — 32,2% от установленной мощности. Применять эти значения для генерирующих мощностей во всем мире не совсем правильно, но отношение вряд ли будет сильно отличаться.

На сегодняшний день ветроэнергетика это экономически наиболее перспективный вид ВИЭ и развивается по экспоненте. Её потенциал весьма велик. Ветреная береговая линия континентов протяжённа. Станции можно строить не только на берегу, но и в море. К тому же сегодня промышленная ветроэнергетика использует ветер только на высотах до 200 м от поверхности земли.

Этапы строительства солнечной электростанции

Строительство домашней солнечной установки может показаться трудным делом, однако, большая часть работ выполняется специалистами. Вот основные этапы строительства:

1. Разработка индивидуального проекта дома фотоэлектрической электростанции

Включая определение оптимальных параметров, таких как:

  • Установка солнечных модулей. Лучшее решение — использовать южную сторону крыши. Если это невозможно, панели устанавливаются в восточном или западном направлении. Однако для того, чтобы получить нужное количество электроэнергии, вам обычно необходимо установить дополнительные модули;
  • Затенение. Избегайте любых теней, так как они снижают эффективность солнечной установки. По этой причине не стоит собирать панели в местах, где они могут быть скрыты ветвями, крышами и другими препятствиями;
  • Угол наклона. В Подмосковье оптимальное значение этого параметра составляет 30-35 градусов, зимой — 65, потому что солнце в этом время зачастую находится ниже горизонта. Поэтому в этот период предстоит наклонять панели вручную, если только мы не оснастили нашу установку солнечным трекером. Тогда они будут перемещены автоматически. Это действие позволит нам максимально повысить эффективность получения электроэнергии.

2. Закупка всех необходимых элементов вместе с сервисом сборки

Хорошим решением является использование фотоэлектрической установки для так называемого ключа. Тогда мы получим полную гарантию от монтажной компании.

4. Страхование установки

Сильные бури и град могут повредить установку. Чтобы минимизировать ущерб, нанесенный в результате, стоит ее застраховать.

5. Мониторинг и обслуживание

Современный инвертор сообщит нам о любых неисправностях в работе солнечных панелей, которые, несомненно, будут способствовать бесперебойной работе системы.

Сравнение эффективности нефтяных скважин и ветряных турбин

В течение 30 лет солнечные и ветровые электростанции выработают электроэнергию на миллион долларов, выдав соответственно 40 миллионов и 55 миллионов киловатт/часов. Скважины, с помощью которых добывают сланцевую нефть и газ, стоимостью миллион долларов, за 30 лет дадут такое количество газа, что его хватит для выработки 300 миллионов киловатт/часов.

Чтобы построить одну скважины (нефть или газ), требуются такие же затраты, как и для строительства двух ветряных турбин. При этом скважина на сланцевом месторождении в час обеспечивает получение 10 баррелей нефти. Если сделать перерасчет на эквивалентность энергии, то ветряная турбина производит 0,7 баррелей нефти в час.

Чтобы хранить баррель нефти или природный газ в нефтяном эквиваленте, требуется 0,5 доллара. Для хранения электроэнергии в эквиваленте баррелю в батареи, требуется 200 долларов.

Ветряные и солнечные станции

Для компенсации эпизодического использования ветровой и солнечной энергии в США используются установки, работающие на нефти и газе. За период с 2000 года их использование возросло в 3 раза. Что касается коэффициента мощности парка ветровых установок, то этот показатель увеличивается приблизительно на 0,7% за год. Это достигается, главным образом, за счет того, что происходит сокращение числа турбин на акр. В результате средняя площадь земли, которая используется для производства электроэнергии, увеличивается на 50%.

Альтернативные источники энергии для частного дома своими руками

Когда не помогает технический прогресс, человечество начинает задумываться о природных источниках необходимой энергии, благодаря которым можно обогреть и осветить свой дом. Вот основные из них:

Рассмотрим идею создания генератора из биоотходов. Действие его будет аналогично природному газу: отходы помещают в закрытую емкость, в результате их разложения выделяются метан и сероводород с углекислотой. Такие источники энергии используются на животноводческих фермах, и тем, кто желает перенять опыт, необходимо либо иметь собственное хозяйство, либо регулярно получать его отходы, и где-то их хранить. Хозяйством занимаются многие, у кого есть частные дома (например, держат кур), так что попробовать вполне можно.

Для создания генератора нужна емкость, которая будет герметично закрываться. В ней должен быть смонтирован специальный шнек для того, чтобы перемешивать отходы. Также, помимо отверстия для загрузки биоматериала, необходима трубка для отвода газа и штуцер для выемки отработанных отходов. Кстати, их можно использовать для удобрения земли и получения хорошего урожая. Повторюсь, что герметичность емкости крайне обязательна, иначе никакой энергии создать не получится. Если емкость не будет использоваться постоянно, то в ней нужен будет еще и клапан для сброса давления.

Итак, подберите размер емкости в зависимости от того, какое количество биоматериала вы планируете использовать. Выберите место для установки конструкции. Имейте в виду, что 1 тонна отходов ориентировочно дает 100 кубов газа. Дабы процесс развивался более динамично – необходимо организовать подогрев емкости. Для этого вам понадобится либо змеевик, либо установка ТЭНа. Бактерии, содержащиеся в отходах, становятся активными при нагревании.

Когда емкость нагреется до нужной температуры – подогрев должен отключиться автоматически. Газ, который получится при этом, преобразовывается в электричество через газовый генератор.

Чтобы использовать энергию ветра, также понадобится генератор, аккумулятор с контроллером для измерения уровня заряда и преобразователь напряжения. Все схемы ветрогенераторов работают по единому принципу. На собранную раму крепятся поворотный узел, лопасти и генератор на станине. Затем монтируется лопата с пружинной стяжкой. Генератор соединяют с поворотным узлом и устанавливают токосъемник. Далее провода подводят к батарее

При выборе пропеллера обратите внимание на его диаметр: от этой величины зависит, какое количество лопастей будет оптимальным для вашего ветрогенератора, и собственно – какое количество энергии он сможет генерировать

Как вы видите, ничего сложного в монтаже и установке генераторов электроэнергии нет. Необходима, конечно, определенная сноровка, но чего не сделаешь в целях экономии средств! Помните только, что источники энергии (биоотходы и ветер) также должны быть постоянными.

Следующий вид альтернативного источника энергии – тепловой насос. Его устройство сложнее, а монтаж более затратный, поскольку предполагает бурение скважин на участке. Поэтому вряд ли он подойдет неискушенному владельцу загородного дома. Кроме того, будет необходим еще и водоем.

Остановимся лучше кратко на солнечных батареях. Их собрать немного проще, потому, что можно купить готовые фотоэлементы. На них есть отметки о мощности в вольт-амперах, поэтому вы сможете рассчитать, какое количество фотоэлементов вам необходимо.

Чтобы собрать корпус солнечной батареи вам понадобится лист фанеры. К нему вы прибьете деревянные рейки и просверлите отверстия для вентиляции. Внутрь необходимо поместить лист ДВП, на котором будет размещена уже готовая (спаянная) цепь фотоэлементов. Останется только проверить работоспособность цепи и прикрутить оргстекло. Вот, пожалуй, и все.

Россия, как страна альтернативных источников энергии

Поскольку Россия входит в число одних из самых технически развитых стран мира, большое внимание уделяется добыче и использованию альтернативных источников энергии. На просторах больших территорий, к сожалению в настоящее время нет централизованных источников энергии

К том уже мы еще не втянуты в общемировую тенденциею, связанную с борьбой за экологию планеты и экономией традиционных видов топлива.

Россия

В каждом, отдельно взятом регионе нашей страны, применяются подходящие этому региону виды альтернативной энергетики. Это связано с географическим положением. А так же возможностью использования того или иного первоисточника получения энергии.

Солнечная энергетика

Солнечные электростанции в настоящее время, получают все большее распространение среди различных слоев населения, как альтернативный или резервный источник электрической и тепловой энергии.

Данный вид энергетики так же применяется в промышленности в нашей стране.

Наиболее крупными солнечными электростануциями, мощностью в 400,0 МВт являются:

  • Орская им. А. А. Влазнева, установленной мощностью 40,0 МВт в Оренбургской области;
  • Бурибаевская, мощностью 20,0 МВт и Бугульчанская, мощностью 15,0 МВт, в Республике Башкортостан;
  • На полуострове Крым функционирует более десяти солнечных электростанций мощностью 20,0 МВт каждая.

Еще на стадии разработки можно насчитать более 50 объектов солнечной генерации на различных этапах строительства. Их место расположения от Дальнего Востока и Сибири, до центральных и южных областей нашей страны.

Общая мощность проектируемых и строящихся объектов составляет более 850,0 МВт.

Ветровая энергетика

Ветряки, работающие для получения электрической энергии в промышленных масштабах, в нашей стране не достигают таких больших масштабов, как солнечные электростанции.

Общая установленная мощность ветровых генераторов составляет чуть больше чем 100,0 МВт. Самые мощные из них это:

  • Зеленоградская ветровая установка, мощностью 5,1 МВт, расположенная в Калининградской области;
  • Останинская (25,0 МВт), Тарханкутская (22,0 МВт) и Сакская (20,0 МВт) – на полуострове Крым.

Также на стадии проектирования и строительства у нас есть 22 ветровые энергетические установки. Их общая мощность более 2500,0 МВт.

Гидроэнергетика

Как раз самый распространенный вид альтернативной энергетики на территории России. На настоящее время доля вырабатываемой электрической энергии ГЭС в разных регионах страны на реках, превышает 20,0 %. Отчет идет от общей генерации всей энергосистемы РФ.

Геотермальная энергетика

Это энергия тепла недр всей планеты, широко используется в ряде стран, где присутствует вулканическая деятельность. У нас данный вид энергетики расположен на Дальнем Востоке, в меру особенностей этого региона.

Их мощность 80,1 МВт. В настоящее время успешно работает 5 геотермальных электрических станций. Из них три расположены на Камчатке (Мутновская, Паужетская и Верхне-Мунтовская), остальные две — на островах Кунашир (Менделеевская) и Итуруп (Океанская).

Использование биотоплива

Использование биотоплива

Наша страна числится в лидерах по экспорту биотоплива на европейский рынок

У нас же это не самый распространенный вид энергоресурсов, как традиционные виды топлива.Однако, в связи с развитием лесной и деревообрабатывающей промышленности, большие территории заняты под сельскохозяйственные культуры, что сподвигло обратить внимание на этот вид энергетики

Последние годы было построено большое количество заводов по переработке отходов древесины. Из них изготавливаются такие материалы, как топливные брикеты и гранулы (пеллеты).

Брикеты и пеллеты, в свою очередь, используются в качестве топлива для различного типа котлов в результате сжигания которых, вырабатывается тепловая и электрическая энергии.

А из отходов сельскохозяйственных культур производится биогаз и жидкое топливо. Оно подходит для применения в двигателях и дизельных установках, там их сжигают, в результате чего производится тепловая и электрическая энергия.

Хоть биотопливо пока не имеет широкого распространения в нашей стране, тем не менее перспективы его развития, достаточно обширны и успешны.

Возобновляемые источники энергии

Население Земливоды

Гидроэлектростанции

Энергию воды используют на протяжении многих веков. Вода вращала водяные колеса, использовавшиеся для разных целей. В наши дни построены огромные плотины и водохранилища, и вода применяется для выработки электроэнергии. Течение реки вращает колеса турбин, превращая энергию воды в электроэнергию. Турбина связана с генератором, который вырабатывает электроэнергию.

Энергия ветра

Энергия ветра используется человеком уже не первое тысячелетие. Ветер надувал паруса и вращал мельницы. Для использования энергии ветра создавались самые разнообразные устройства, предназначенные для выработки электроэнергии и для других целей. Ветер вращает лопасти ветряка, приводящие в действие вал турбины, связанной с электрогенератором.

Атомная энергия

атомовуранэлементживые организмыатмосферу

Аварии ядерных реакторов и выбросы радиоактивных веществ в атмосферу представляют собой большую опасность. Авария на ядерной электростанции в Чернобыле (Украина), случившаяся в 1986 г., повлекла за собой гибель многих людей и заражение огромной территории. Радиоактивные отходы угрожают всему живому в течение тысячелетий. Обычно их хоронят ни дне морей, но нередки и случаи захоронения отходов глубоко под землей.

Другие возобновляемые источники энергии

В будущем люди смогут использовать множество различных естественных источников энергии. Например, в вулканических районах разрабатывается технология использования геотермальной энергии (тепла земных недр). Другим источником энергии является биогаз, образующийся при гниении отходов. Он может применяться для отопления жилищ и нагревания воды. Уже созданы приливные электростанции. Поперек устьев рек (эстуариев) нередко возводят плотины. Особые турбины, приводимые в действие приливами и отливами, вырабатывают электроэнергию.

Как сделать ротор Савония:

Ротор Савония представляет собой механизм, применяемый крестьянами в Азии и Африке для подачи воды при ирригации. Чтобы самим сделать ротор, вам потребуются несколько чертежных кнопок, большая пластмассовая бутылка, крышка, две прокладки, стержень длиной 1 м и толщиной 5 мм и два металлических кольца.

Как это сделать:

1. Чтобы сделать лопасти, обрежьте бутылку сверху и разрежьте ее пополам вдоль.

2. С помощью чертежных кнопок прикрепите половинки бутылки к крышке

Соблюдайте осторожность при обращении с кнопками

3. Приклейте прокладки к крышке и воткните в нее стержень.

4. Приверните кольца к деревянному основанию и поставьте ваш ротор на ветру. Вставьте стержень в кольца и проверьте вращение ротора. Выбрав оптимальное положение половины бутылки, приклейте их к крышке прочным водоотталкивающим клеем.

Энергия из морских волн

В апреле 2021 года британская компания Mocean Energy представила Blue X — прототип установки, которая будет преобразовывать кинетическую энергию морских волн в электричество.

Установка Blue X

(Фото: Mocean Energy)

Принцип работы такой: установку помещают на поверхность воды, она качается на волнах и приводит в движение шарнир посередине. Тот в свою очередь запускает генератор, который вырабатывает электроэнергию и по кабелям перенаправляет ее на сушу.

Как это применять: по оценкам Mocean Energy, если использовать хотя бы 1% всей доступной энергии волн в мире, можно обеспечить электричеством 50 млн зданий. Для сравнения: в России насчитывается около 14 млн жилых домов.

Основные характеристики Li-Ion-батарей, применяемых в электротранспорте

Любой накопитель заряда работает циклически: «накопление энергии — хранение энергии — разряд». На каждом из этапов цикла есть определяющие характеристики: для режима накопления это в первую очередь скорость (мощность) накопления заряда; для этапа хранения энергии это количество энергии, которую может запасти накопитель (произведение мощности на время заряда), а также величина потерь энергии во времени (саморазряд); для разряда важна скорость разряда во времени (мощность). В целом цикл характеризуется энергоэффективностью (отношение отданной энергии к запасенной в накопителе), временем выхода на рабочие параметры и деградацией — количеством циклов заряда-разряда до потери значимой (20–30%) части емкости. Все эти характеристики зависят от эксплуатационных факторов, таких как внешняя температура и режимы заряда-разряда. В спецификациях для накопителей заряда для отражения основных характеристик указывают удельную энергию (Вт·ч/кг), удельную мощность (Вт/кг), плотность энергии (Вт·ч/литр), рабочее напряжение, рабочий диапазон температур, режимы заряда/разряда и др.

Концепция Li-Ion-батарей была предложена еще на заре ХХ в. и имеет большую историю развития со своими успехами и неудачами . В 2019 г. Нобелевская премия по химии была вручена «За совершенствование (разработку) литий-ионных батарей» Джону Гуденафу (John B. Goodenough), Стэнли Уиттенгему (M. Stanley Whittingham) и Акиру Ёсино (Akira Yoshino) , что подчеркивает перспективность дальнейшего развития этой технологии. Мы рассмотрим Li-Ion-батареи, применяемые в электротранспорте и в данный момент доступные на рынке.

Li-Ion-батареи (вторичные химические источники тока) можно разделить на несколько подгрупп по характеристикам удельной энергоемкости, количества циклов заряда/разряда и объема мирового производства (доля рынка в EV). В первую группу входят батареи, в составе которых (далее в скобках указаны катод/анод, устоявшаяся аббревиатура): Li-кобальт (LiCoO2/С, LCO), Li-никель-марганец-кобальт-оксид (LiNiMnCoO2/С, NMC), Li-марганцевая шпинель (LiMn2O4/С, LMO), Li-никель-кобальт-оксид алюминия (LiNiCoAlO2/С, NCA и NMC-LMO/С). Ко второй группе можно отнести литий-железофосфатные батареи (LiFePO4/C, LFP). Третья группа состоит из различных вариантов литий-титанатных батарей (NMC/LTO, LMO/LTO).

Все вышеуказанные Li-Ion-батареи работают по одному принципу. Во время разряда к катоду (положительный электрод, оксид металла) движутся ионы через электролит и сепаратор от анода (отрицательный электрод, пористый углерод). В процессе заряда движение происходит в обратном направлении. На рис. 1 отражена схема работы и устройства Li-Ion-батареи на примере LCO.

Рис. 1. Схема работы Li-Ion-батареи на примере LCO

Обобщенные характеристики указанных выше групп батарей в сравнении со свинцовыми аккумуляторами и NiCd, которые все еще распространены на рынке для различных решений, приведены в табл. 1.

Таблица 1. Обобщенные характеристики батарей на основе различных технологий, которые в настоящее время применяются в электротранспорте

Тип батареи

LCO/C, NMC/C, LCA/C, LMO/C, NMC-LMO/C

LFP/C

NMC/LTO, LMO/LTO

Свинцовый
(Pb/H2SO4)

NiCd

Номинальное напряжение (ячейка), В

~3,7

~3,2

~2,3

~2,1

~1,3

Удельная энергоемкость, Вт·ч/кг

До 250

До 160

До 110

До 40

До 65

Циклируемость (до потери 20% номинальной емкости, 100%-ный перезаряд), количество циклов заряд-разряд

300–5000

2000–7000

Более 25000

~1000*

До 900

Стоимость (за сборку),
1 кВт·ч, $

От 150

От 200

Более 1000

Менее 150

Менее 150

Доля рынка (EV), %

~ 90

~10

~ 1

Применение и особенности

Легковой электротранспорт. Теряют эксплуатационные характеристики при отрицательных температурах

Коммерческий и легковой электротранспорт

Коммерческий и легковой электротранспорт. Широкий диапазон рабочих температур (–40…+55 °С), безопасные

Дополнительная информация

Аккумуляторов надолго не хватит

Интересно! Существует важное условие, целью которого является обеспечение страны энергией в течение двух месяцев. Для этого созданы специальные хранилища, где находятся запасы углеводородов

В сегодняшних условиях запасти в таких количествах электроэнергию невозможно. Так, в США все имеющиеся батареи, все аккумуляторы и миллион электромобилей могут обеспечивать спрос на электроэнергию лишь в течение двух часов.

Сейчас много говорят об аккумуляторах завода Tesla Gigafactory. Конечно, в течение года этих устройств производится очень много. Однако весь годовой выпуск в Соединенных Штатах обеспечит только 3 минуты потребностей на электроэнергию. Для того, чтобы создать запас аккумуляторов, с помощью которых можно обеспечить необходимой энергией Штаты в течение двух дней, Tesla Gigafactory должен работать тысячу лет.

Завод Tesla Gigafactory в Китае

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector